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No formal specification available? Learn it!
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property stating that for all s
1

, s
2

œ S such that ›(s
1

) = ›(s
2

) we must have L(s
1

) = L(s
2

).
The Lı algorithm ensures this by having Á œ E, using that L(s) = ›(s)(Á) for any s œ S.

4 A General Correctness Theorem

In this section we work towards a general correctness theorem. We then show how it applies
to the ID algorithm, to the algorithm by Arbib and Zeiger and to Lı.
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The key observation for the correctness theorem
is the following. Let w = (S ‡≠æ T, T

fi≠æ P ) be
a wrapper with minimization (S e≠æ H, H

m≠æ P ).
If ‡ œ E , then the factorization system gives us a
unique diagonal „ in the left square of (3), which by (the dual of) Proposition ?? satisfies
„ œ E . Similarly, if fi œ M, we have Â in the right square of (3), with Â œ M. Composing the
two diagrams and using again the diagonal property, one sees that „ and Â must be mutually
inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
Example 2, our reasoning hints at a correctness criterion: ‡ œ E and fi œ M upon termination
ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f ); if fi œ M
and w is f-closed, then Â as given in (3) is an F -algebra homomorphism (H, ◊f ) æ (T, f).
Proof. Assume that ‡ œ E and w is FT T H

FS P

FT FH H

f „

fi m
›f

F ‡ F e closef

F ‡ 1

2

F „

3

4
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◊f

m

1 definition of ›f

2 (3)
3 functoriality, (3)
4 definition of ◊f

5 closedness

f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f ).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ

Q

I Y

”Q

outQinitQ

of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
is an automaton without an output map; an output system is an
automaton without an initial state map.
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Endofunctor                            = automaton typeF : C � C

Category       = universe of state-spacesC
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ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
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We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
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I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
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◊f can be found in the proof of Proposition 9.) J
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We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f ); if fi œ M
and w is f-closed, then Â as given in (3) is an F -algebra homomorphism (H, ◊f ) æ (T, f).
Proof. Assume that ‡ œ E and w is FT T H

FS P

FT FH H

f „

fi m
›f

F ‡ F e closef

F ‡ 1

2

F „

3

4

5

◊f

m

1 definition of ›f

2 (3)
3 functoriality, (3)
4 definition of ◊f

5 closedness

f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
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Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
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C, which will serve as initial state selector and output of the automaton, respectively.
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4 A General Correctness Theorem

In this section we work towards a general correctness theorem. We then show how it applies
to the ID algorithm, to the algorithm by Arbib and Zeiger and to Lı.
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The key observation for the correctness theorem
is the following. Let w = (S ‡≠æ T, T

fi≠æ P ) be
a wrapper with minimization (S e≠æ H, H

m≠æ P ).
If ‡ œ E , then the factorization system gives us a
unique diagonal „ in the left square of (3), which by (the dual of) Proposition ?? satisfies
„ œ E . Similarly, if fi œ M, we have Â in the right square of (3), with Â œ M. Composing the
two diagrams and using again the diagonal property, one sees that „ and Â must be mutually
inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
Example 2, our reasoning hints at a correctness criterion: ‡ œ E and fi œ M upon termination
ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f ); if fi œ M
and w is f-closed, then Â as given in (3) is an F -algebra homomorphism (H, ◊f ) æ (T, f).
Proof. Assume that ‡ œ E and w is FT T H
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f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f ).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ
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I Y
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outQinitQ

of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
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is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f ).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ
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of C equipped with an initial state map initQ : I æ Q, an output
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see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
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Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
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„ œ E . Similarly, if fi œ M, we have Â in the right square of (3), with Â œ M. Composing the
two diagrams and using again the diagonal property, one sees that „ and Â must be mutually
inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
Example 2, our reasoning hints at a correctness criterion: ‡ œ E and fi œ M upon termination
ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f ); if fi œ M
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f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f ).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ
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of C equipped with an initial state map initQ : I æ Q, an output
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„ œ E . Similarly, if fi œ M, we have Â in the right square of (3), with Â œ M. Composing the
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inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
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ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
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m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
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(T, f) æ (H, ◊f ).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ
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of C equipped with an initial state map initQ : I æ Q, an output
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f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
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C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ
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Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ
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of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
is an automaton without an output map; an output system is an
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In this section we work towards a general correctness theorem. We then show how it applies
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Ongoing and future work

• Library & tool to learn control + data-flow models 
(as nominal automata) 

• Applications: 

• Specification mining 
• Network verification, with  
• Verification of cryptographic protocols 
• Ransomware detection


