
Learning Nominal Automata

POPL 2017
Paris

Joshua Moerman
(Radboud University)

Matteo Sammartino, Alexandra Silva
(University College London)

Bartek Klin, Michał Szynwelski
(Warsaw University)

Active learning

Learner
queries

answers

builds

System
black-box

S

automaton
model of

S

1

Active learning

Learner
queries

answers

builds

System
black-box

S

automaton
model of

S

No formal specification available? Learn it! 1

set of system behaviors is a regular language

Finite alphabet of system’s actions A

L � A�

L* algorithm (D.Angluin ’87)

2

set of system behaviors is a regular language

Finite alphabet of system’s actions A

L � A�

L* algorithm (D.Angluin ’87)

Learner Teacher
L

2

set of system behaviors is a regular language

Finite alphabet of system’s actions A

L � A�

L* algorithm (D.Angluin ’87)

Learner Teacher
L

Q:w � L?
A: Y/N

2

set of system behaviors is a regular language

Finite alphabet of system’s actions A

L � A�

L* algorithm (D.Angluin ’87)

Learner Teacher
L

Q:w � L?
A: Y/N

L(H) = L?Q:
A: Y / N + counterexample

H = hypothesis automatonH

2

set of system behaviors is a regular language

Finite alphabet of system’s actions A

L � A�

L* algorithm (D.Angluin ’87)

Learner Teacher
L

Q:w � L?
A: Y/N

Minimal DFA
accepting L L

builds

L(H) = L?Q:
A: Y / N + counterexample

H = hypothesis automatonH

2

A = {a, b}

Observation table

a aa

0 0 1

a 0 1 0

b 0 0 0

�

�

L⋆ LEARNER

1 S,E ← {ϵ}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 ∈ S, a ∈ A such that

row(s1a) ̸= row(s), for all s ∈ S
6 S ← S ∪ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 ∈ S, a ∈ A, and e ∈ E such that

row(s1) = row(s2) and L(s1ae) ̸= L(s2ae)
9 E ← E ∪ {ae}

10 Make the conjecture M(S,E)
11 if the Teacher replies no, with a counter-example t
12 S ← S ∪ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

structures, which allows the programmer to rely on convenient
intuitions of searching through infinite sets in finite time.

The paper is organized as follows. In Section 2, we present an
overview of our contributions (and the original algorithm) highlight-
ing the challenges we faced in the various steps. In Section 3, we
revise some basic concepts of nominal sets and automata. Section 4
contains the core technical contributions of our paper: The new
algorithm and proof of correctness. In Section 5, we describe an
algorithm to learn nominal non-deterministic automata. Section 6
contains a description of NLambda, details of the implementation,
and results of preliminary experiments. Section 7 contains a dis-
cussion of related work. We conclude the paper with a discussion
section where also future directions are presented.

2. Overview of the Approach

In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L⋆ provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w ∈ A⋆, to

which the teacher will reply whether w ∈ L or not;

• equivalence queries, consisting of a hypothesis DFA H , to
which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w ∈ L(H)△L (△ denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

ϵ a aa

S
∪

S·A

⎡

⎣

ϵ 0 0 1

a 0 1 0
b 0 0 0

S,E ⊆ A⋆

row : S ∪ S·A→ 2E

row(u)(v) = 1 ⇐⇒ uv ∈ L

This table indicates that L contains at least aa and definitely
does not contain the words ϵ, a, b, ba, baa, aaa. Since row is fully

determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, δ, F) where
• Q = {row(s) | s ∈ S} is a finite set of states;

• F = {row(s) | s ∈ S, row(s)(ϵ) = 1} ⊆ Q is the set of final
states;

• q0 = row(ϵ) is the initial state;

• δ : Q × A → Q is the transition function given by
δ(row(s), a) = row(sa).

For this to be well-defined, we need to have ϵ ∈ S (for the initial
state) and ϵ ∈ E (for final states), and for the transition function
there are two crucial properties of the table that need to hold:
Closedness and consistency. An observation table (S,E) is closed
if for all t ∈ S·A there exists an s ∈ S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a ∈ A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple Example of Execution

Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w ∈ A⋆, |w| = n}

If the alphabet A is finite then Ln is regular for any n ∈ N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {ϵ}, and we fill the entries of the
table below by asking membership queries for ϵ, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

ϵ

ϵ 0

a 0
b 0

A1 = q0 a, b

q0 = row(ϵ) = {ϵ +→ 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S ← S ∪ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: Rows ϵ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

ϵ
ϵ 0
a 0
aa 1
b 0
ab 0
aaa 0
aab 0

ϵ a
ϵ 0 0
a 0 1
aa 1 0
b 0 0
ab 0 0
aaa 0 0
aab 0 0

A2 =

q0 q1

q2

b

a

b

aa, b

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S ← S ∪ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ϵ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.

614

S, E � A�

S

L⋆ LEARNER

1 S,E ← {ϵ}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 ∈ S, a ∈ A such that

row(s1a) ̸= row(s), for all s ∈ S
6 S ← S ∪ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 ∈ S, a ∈ A, and e ∈ E such that

row(s1) = row(s2) and L(s1ae) ̸= L(s2ae)
9 E ← E ∪ {ae}

10 Make the conjecture M(S,E)
11 if the Teacher replies no, with a counter-example t
12 S ← S ∪ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

structures, which allows the programmer to rely on convenient
intuitions of searching through infinite sets in finite time.

The paper is organized as follows. In Section 2, we present an
overview of our contributions (and the original algorithm) highlight-
ing the challenges we faced in the various steps. In Section 3, we
revise some basic concepts of nominal sets and automata. Section 4
contains the core technical contributions of our paper: The new
algorithm and proof of correctness. In Section 5, we describe an
algorithm to learn nominal non-deterministic automata. Section 6
contains a description of NLambda, details of the implementation,
and results of preliminary experiments. Section 7 contains a dis-
cussion of related work. We conclude the paper with a discussion
section where also future directions are presented.

2. Overview of the Approach

In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L⋆ provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w ∈ A⋆, to

which the teacher will reply whether w ∈ L or not;

• equivalence queries, consisting of a hypothesis DFA H , to
which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w ∈ L(H)△L (△ denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

ϵ a aa

S
∪

S·A

⎡

⎣

ϵ 0 0 1

a 0 1 0
b 0 0 0

S,E ⊆ A⋆

row : S ∪ S·A→ 2E

row(u)(v) = 1 ⇐⇒ uv ∈ L

This table indicates that L contains at least aa and definitely
does not contain the words ϵ, a, b, ba, baa, aaa. Since row is fully

determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, δ, F) where
• Q = {row(s) | s ∈ S} is a finite set of states;

• F = {row(s) | s ∈ S, row(s)(ϵ) = 1} ⊆ Q is the set of final
states;

• q0 = row(ϵ) is the initial state;

• δ : Q × A → Q is the transition function given by
δ(row(s), a) = row(sa).

For this to be well-defined, we need to have ϵ ∈ S (for the initial
state) and ϵ ∈ E (for final states), and for the transition function
there are two crucial properties of the table that need to hold:
Closedness and consistency. An observation table (S,E) is closed
if for all t ∈ S·A there exists an s ∈ S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a ∈ A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple Example of Execution

Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w ∈ A⋆, |w| = n}

If the alphabet A is finite then Ln is regular for any n ∈ N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {ϵ}, and we fill the entries of the
table below by asking membership queries for ϵ, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

ϵ

ϵ 0

a 0
b 0

A1 = q0 a, b

q0 = row(ϵ) = {ϵ +→ 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S ← S ∪ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: Rows ϵ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

ϵ
ϵ 0
a 0
aa 1
b 0
ab 0
aaa 0
aab 0

ϵ a
ϵ 0 0
a 0 1
aa 1 0
b 0 0
ab 0 0
aaa 0 0
aab 0 0

A2 =

q0 q1

q2

b

a

b

aa, b

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S ← S ∪ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ϵ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.

614

L⋆ LEARNER

1 S,E ← {ϵ}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 ∈ S, a ∈ A such that

row(s1a) ̸= row(s), for all s ∈ S
6 S ← S ∪ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 ∈ S, a ∈ A, and e ∈ E such that

row(s1) = row(s2) and L(s1ae) ̸= L(s2ae)
9 E ← E ∪ {ae}

10 Make the conjecture M(S,E)
11 if the Teacher replies no, with a counter-example t
12 S ← S ∪ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

structures, which allows the programmer to rely on convenient
intuitions of searching through infinite sets in finite time.

The paper is organized as follows. In Section 2, we present an
overview of our contributions (and the original algorithm) highlight-
ing the challenges we faced in the various steps. In Section 3, we
revise some basic concepts of nominal sets and automata. Section 4
contains the core technical contributions of our paper: The new
algorithm and proof of correctness. In Section 5, we describe an
algorithm to learn nominal non-deterministic automata. Section 6
contains a description of NLambda, details of the implementation,
and results of preliminary experiments. Section 7 contains a dis-
cussion of related work. We conclude the paper with a discussion
section where also future directions are presented.

2. Overview of the Approach

In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L⋆ provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w ∈ A⋆, to

which the teacher will reply whether w ∈ L or not;

• equivalence queries, consisting of a hypothesis DFA H , to
which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w ∈ L(H)△L (△ denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

ϵ a aa

S
∪

S·A

⎡

⎣

ϵ 0 0 1

a 0 1 0
b 0 0 0

S,E ⊆ A⋆

row : S ∪ S·A→ 2E

row(u)(v) = 1 ⇐⇒ uv ∈ L

This table indicates that L contains at least aa and definitely
does not contain the words ϵ, a, b, ba, baa, aaa. Since row is fully

determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, δ, F) where
• Q = {row(s) | s ∈ S} is a finite set of states;

• F = {row(s) | s ∈ S, row(s)(ϵ) = 1} ⊆ Q is the set of final
states;

• q0 = row(ϵ) is the initial state;

• δ : Q × A → Q is the transition function given by
δ(row(s), a) = row(sa).

For this to be well-defined, we need to have ϵ ∈ S (for the initial
state) and ϵ ∈ E (for final states), and for the transition function
there are two crucial properties of the table that need to hold:
Closedness and consistency. An observation table (S,E) is closed
if for all t ∈ S·A there exists an s ∈ S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a ∈ A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple Example of Execution

Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w ∈ A⋆, |w| = n}

If the alphabet A is finite then Ln is regular for any n ∈ N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {ϵ}, and we fill the entries of the
table below by asking membership queries for ϵ, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

ϵ

ϵ 0

a 0
b 0

A1 = q0 a, b

q0 = row(ϵ) = {ϵ +→ 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S ← S ∪ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: Rows ϵ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

ϵ
ϵ 0
a 0
aa 1
b 0
ab 0
aaa 0
aab 0

ϵ a
ϵ 0 0
a 0 1
aa 1 0
b 0 0
ab 0 0
aaa 0 0
aab 0 0

A2 =

q0 q1

q2

b

a

b

aa, b

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S ← S ∪ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ϵ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.

614

row(s)(e) = 1 �� se � L

3

A = {a, b}

Observation table

states = {row(s) | s � S}
{row(s) | s � S, row(s)(�) = 1}final states =

initial state = row(�)

row(s)
a�� row(sa)

Hypothesis automaton{
transition function

a aa

0 0 1

a 0 1 0

b 0 0 0

�

�

L⋆ LEARNER

1 S,E ← {ϵ}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 ∈ S, a ∈ A such that

row(s1a) ̸= row(s), for all s ∈ S
6 S ← S ∪ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 ∈ S, a ∈ A, and e ∈ E such that

row(s1) = row(s2) and L(s1ae) ̸= L(s2ae)
9 E ← E ∪ {ae}

10 Make the conjecture M(S,E)
11 if the Teacher replies no, with a counter-example t
12 S ← S ∪ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

structures, which allows the programmer to rely on convenient
intuitions of searching through infinite sets in finite time.

The paper is organized as follows. In Section 2, we present an
overview of our contributions (and the original algorithm) highlight-
ing the challenges we faced in the various steps. In Section 3, we
revise some basic concepts of nominal sets and automata. Section 4
contains the core technical contributions of our paper: The new
algorithm and proof of correctness. In Section 5, we describe an
algorithm to learn nominal non-deterministic automata. Section 6
contains a description of NLambda, details of the implementation,
and results of preliminary experiments. Section 7 contains a dis-
cussion of related work. We conclude the paper with a discussion
section where also future directions are presented.

2. Overview of the Approach

In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L⋆ provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w ∈ A⋆, to

which the teacher will reply whether w ∈ L or not;

• equivalence queries, consisting of a hypothesis DFA H , to
which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w ∈ L(H)△L (△ denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

ϵ a aa

S
∪

S·A

⎡

⎣

ϵ 0 0 1

a 0 1 0
b 0 0 0

S,E ⊆ A⋆

row : S ∪ S·A→ 2E

row(u)(v) = 1 ⇐⇒ uv ∈ L

This table indicates that L contains at least aa and definitely
does not contain the words ϵ, a, b, ba, baa, aaa. Since row is fully

determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, δ, F) where
• Q = {row(s) | s ∈ S} is a finite set of states;

• F = {row(s) | s ∈ S, row(s)(ϵ) = 1} ⊆ Q is the set of final
states;

• q0 = row(ϵ) is the initial state;

• δ : Q × A → Q is the transition function given by
δ(row(s), a) = row(sa).

For this to be well-defined, we need to have ϵ ∈ S (for the initial
state) and ϵ ∈ E (for final states), and for the transition function
there are two crucial properties of the table that need to hold:
Closedness and consistency. An observation table (S,E) is closed
if for all t ∈ S·A there exists an s ∈ S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a ∈ A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple Example of Execution

Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w ∈ A⋆, |w| = n}

If the alphabet A is finite then Ln is regular for any n ∈ N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {ϵ}, and we fill the entries of the
table below by asking membership queries for ϵ, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

ϵ

ϵ 0

a 0
b 0

A1 = q0 a, b

q0 = row(ϵ) = {ϵ +→ 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S ← S ∪ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: Rows ϵ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

ϵ
ϵ 0
a 0
aa 1
b 0
ab 0
aaa 0
aab 0

ϵ a
ϵ 0 0
a 0 1
aa 1 0
b 0 0
ab 0 0
aaa 0 0
aab 0 0

A2 =

q0 q1

q2

b

a

b

aa, b

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S ← S ∪ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ϵ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.

614

S, E � A�

S

L⋆ LEARNER

1 S,E ← {ϵ}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 ∈ S, a ∈ A such that

row(s1a) ̸= row(s), for all s ∈ S
6 S ← S ∪ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 ∈ S, a ∈ A, and e ∈ E such that

row(s1) = row(s2) and L(s1ae) ̸= L(s2ae)
9 E ← E ∪ {ae}

10 Make the conjecture M(S,E)
11 if the Teacher replies no, with a counter-example t
12 S ← S ∪ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

structures, which allows the programmer to rely on convenient
intuitions of searching through infinite sets in finite time.

The paper is organized as follows. In Section 2, we present an
overview of our contributions (and the original algorithm) highlight-
ing the challenges we faced in the various steps. In Section 3, we
revise some basic concepts of nominal sets and automata. Section 4
contains the core technical contributions of our paper: The new
algorithm and proof of correctness. In Section 5, we describe an
algorithm to learn nominal non-deterministic automata. Section 6
contains a description of NLambda, details of the implementation,
and results of preliminary experiments. Section 7 contains a dis-
cussion of related work. We conclude the paper with a discussion
section where also future directions are presented.

2. Overview of the Approach

In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L⋆ provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w ∈ A⋆, to

which the teacher will reply whether w ∈ L or not;

• equivalence queries, consisting of a hypothesis DFA H , to
which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w ∈ L(H)△L (△ denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

ϵ a aa

S
∪

S·A

⎡

⎣

ϵ 0 0 1

a 0 1 0
b 0 0 0

S,E ⊆ A⋆

row : S ∪ S·A→ 2E

row(u)(v) = 1 ⇐⇒ uv ∈ L

This table indicates that L contains at least aa and definitely
does not contain the words ϵ, a, b, ba, baa, aaa. Since row is fully

determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, δ, F) where
• Q = {row(s) | s ∈ S} is a finite set of states;

• F = {row(s) | s ∈ S, row(s)(ϵ) = 1} ⊆ Q is the set of final
states;

• q0 = row(ϵ) is the initial state;

• δ : Q × A → Q is the transition function given by
δ(row(s), a) = row(sa).

For this to be well-defined, we need to have ϵ ∈ S (for the initial
state) and ϵ ∈ E (for final states), and for the transition function
there are two crucial properties of the table that need to hold:
Closedness and consistency. An observation table (S,E) is closed
if for all t ∈ S·A there exists an s ∈ S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a ∈ A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple Example of Execution

Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w ∈ A⋆, |w| = n}

If the alphabet A is finite then Ln is regular for any n ∈ N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {ϵ}, and we fill the entries of the
table below by asking membership queries for ϵ, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

ϵ

ϵ 0

a 0
b 0

A1 = q0 a, b

q0 = row(ϵ) = {ϵ +→ 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S ← S ∪ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: Rows ϵ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

ϵ
ϵ 0
a 0
aa 1
b 0
ab 0
aaa 0
aab 0

ϵ a
ϵ 0 0
a 0 1
aa 1 0
b 0 0
ab 0 0
aaa 0 0
aab 0 0

A2 =

q0 q1

q2

b

a

b

aa, b

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S ← S ∪ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ϵ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.

614

L⋆ LEARNER

1 S,E ← {ϵ}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 ∈ S, a ∈ A such that

row(s1a) ̸= row(s), for all s ∈ S
6 S ← S ∪ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 ∈ S, a ∈ A, and e ∈ E such that

row(s1) = row(s2) and L(s1ae) ̸= L(s2ae)
9 E ← E ∪ {ae}

10 Make the conjecture M(S,E)
11 if the Teacher replies no, with a counter-example t
12 S ← S ∪ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

structures, which allows the programmer to rely on convenient
intuitions of searching through infinite sets in finite time.

The paper is organized as follows. In Section 2, we present an
overview of our contributions (and the original algorithm) highlight-
ing the challenges we faced in the various steps. In Section 3, we
revise some basic concepts of nominal sets and automata. Section 4
contains the core technical contributions of our paper: The new
algorithm and proof of correctness. In Section 5, we describe an
algorithm to learn nominal non-deterministic automata. Section 6
contains a description of NLambda, details of the implementation,
and results of preliminary experiments. Section 7 contains a dis-
cussion of related work. We conclude the paper with a discussion
section where also future directions are presented.

2. Overview of the Approach

In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L⋆ provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w ∈ A⋆, to

which the teacher will reply whether w ∈ L or not;

• equivalence queries, consisting of a hypothesis DFA H , to
which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w ∈ L(H)△L (△ denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

ϵ a aa

S
∪

S·A

⎡

⎣

ϵ 0 0 1

a 0 1 0
b 0 0 0

S,E ⊆ A⋆

row : S ∪ S·A→ 2E

row(u)(v) = 1 ⇐⇒ uv ∈ L

This table indicates that L contains at least aa and definitely
does not contain the words ϵ, a, b, ba, baa, aaa. Since row is fully

determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, δ, F) where
• Q = {row(s) | s ∈ S} is a finite set of states;

• F = {row(s) | s ∈ S, row(s)(ϵ) = 1} ⊆ Q is the set of final
states;

• q0 = row(ϵ) is the initial state;

• δ : Q × A → Q is the transition function given by
δ(row(s), a) = row(sa).

For this to be well-defined, we need to have ϵ ∈ S (for the initial
state) and ϵ ∈ E (for final states), and for the transition function
there are two crucial properties of the table that need to hold:
Closedness and consistency. An observation table (S,E) is closed
if for all t ∈ S·A there exists an s ∈ S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a ∈ A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple Example of Execution

Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w ∈ A⋆, |w| = n}

If the alphabet A is finite then Ln is regular for any n ∈ N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {ϵ}, and we fill the entries of the
table below by asking membership queries for ϵ, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

ϵ

ϵ 0

a 0
b 0

A1 = q0 a, b

q0 = row(ϵ) = {ϵ +→ 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S ← S ∪ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: Rows ϵ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

ϵ
ϵ 0
a 0
aa 1
b 0
ab 0
aaa 0
aab 0

ϵ a
ϵ 0 0
a 0 1
aa 1 0
b 0 0
ab 0 0
aaa 0 0
aab 0 0

A2 =

q0 q1

q2

b

a

b

aa, b

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S ← S ∪ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ϵ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.

614

row(s)(e) = 1 �� se � L

3

A = {a, b}

Observation table

states = {row(s) | s � S}
{row(s) | s � S, row(s)(�) = 1}final states =

initial state = row(�)

row(s)
a�� row(sa)

Hypothesis automaton{
transition function

a aa

0 0 1

a 0 1 0

b 0 0 0

�

�

L⋆ LEARNER

1 S,E ← {ϵ}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 ∈ S, a ∈ A such that

row(s1a) ̸= row(s), for all s ∈ S
6 S ← S ∪ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 ∈ S, a ∈ A, and e ∈ E such that

row(s1) = row(s2) and L(s1ae) ̸= L(s2ae)
9 E ← E ∪ {ae}

10 Make the conjecture M(S,E)
11 if the Teacher replies no, with a counter-example t
12 S ← S ∪ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

structures, which allows the programmer to rely on convenient
intuitions of searching through infinite sets in finite time.

The paper is organized as follows. In Section 2, we present an
overview of our contributions (and the original algorithm) highlight-
ing the challenges we faced in the various steps. In Section 3, we
revise some basic concepts of nominal sets and automata. Section 4
contains the core technical contributions of our paper: The new
algorithm and proof of correctness. In Section 5, we describe an
algorithm to learn nominal non-deterministic automata. Section 6
contains a description of NLambda, details of the implementation,
and results of preliminary experiments. Section 7 contains a dis-
cussion of related work. We conclude the paper with a discussion
section where also future directions are presented.

2. Overview of the Approach

In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L⋆ provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w ∈ A⋆, to

which the teacher will reply whether w ∈ L or not;

• equivalence queries, consisting of a hypothesis DFA H , to
which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w ∈ L(H)△L (△ denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

ϵ a aa

S
∪

S·A

⎡

⎣

ϵ 0 0 1

a 0 1 0
b 0 0 0

S,E ⊆ A⋆

row : S ∪ S·A→ 2E

row(u)(v) = 1 ⇐⇒ uv ∈ L

This table indicates that L contains at least aa and definitely
does not contain the words ϵ, a, b, ba, baa, aaa. Since row is fully

determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, δ, F) where
• Q = {row(s) | s ∈ S} is a finite set of states;

• F = {row(s) | s ∈ S, row(s)(ϵ) = 1} ⊆ Q is the set of final
states;

• q0 = row(ϵ) is the initial state;

• δ : Q × A → Q is the transition function given by
δ(row(s), a) = row(sa).

For this to be well-defined, we need to have ϵ ∈ S (for the initial
state) and ϵ ∈ E (for final states), and for the transition function
there are two crucial properties of the table that need to hold:
Closedness and consistency. An observation table (S,E) is closed
if for all t ∈ S·A there exists an s ∈ S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a ∈ A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple Example of Execution

Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w ∈ A⋆, |w| = n}

If the alphabet A is finite then Ln is regular for any n ∈ N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {ϵ}, and we fill the entries of the
table below by asking membership queries for ϵ, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

ϵ

ϵ 0

a 0
b 0

A1 = q0 a, b

q0 = row(ϵ) = {ϵ +→ 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S ← S ∪ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: Rows ϵ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

ϵ
ϵ 0
a 0
aa 1
b 0
ab 0
aaa 0
aab 0

ϵ a
ϵ 0 0
a 0 1
aa 1 0
b 0 0
ab 0 0
aaa 0 0
aab 0 0

A2 =

q0 q1

q2

b

a

b

aa, b

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S ← S ∪ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ϵ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.

614

S, E � A�

S

L⋆ LEARNER

1 S,E ← {ϵ}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 ∈ S, a ∈ A such that

row(s1a) ̸= row(s), for all s ∈ S
6 S ← S ∪ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 ∈ S, a ∈ A, and e ∈ E such that

row(s1) = row(s2) and L(s1ae) ̸= L(s2ae)
9 E ← E ∪ {ae}

10 Make the conjecture M(S,E)
11 if the Teacher replies no, with a counter-example t
12 S ← S ∪ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

structures, which allows the programmer to rely on convenient
intuitions of searching through infinite sets in finite time.

The paper is organized as follows. In Section 2, we present an
overview of our contributions (and the original algorithm) highlight-
ing the challenges we faced in the various steps. In Section 3, we
revise some basic concepts of nominal sets and automata. Section 4
contains the core technical contributions of our paper: The new
algorithm and proof of correctness. In Section 5, we describe an
algorithm to learn nominal non-deterministic automata. Section 6
contains a description of NLambda, details of the implementation,
and results of preliminary experiments. Section 7 contains a dis-
cussion of related work. We conclude the paper with a discussion
section where also future directions are presented.

2. Overview of the Approach

In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L⋆ provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w ∈ A⋆, to

which the teacher will reply whether w ∈ L or not;

• equivalence queries, consisting of a hypothesis DFA H , to
which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w ∈ L(H)△L (△ denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

ϵ a aa

S
∪

S·A

⎡

⎣

ϵ 0 0 1

a 0 1 0
b 0 0 0

S,E ⊆ A⋆

row : S ∪ S·A→ 2E

row(u)(v) = 1 ⇐⇒ uv ∈ L

This table indicates that L contains at least aa and definitely
does not contain the words ϵ, a, b, ba, baa, aaa. Since row is fully

determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, δ, F) where
• Q = {row(s) | s ∈ S} is a finite set of states;

• F = {row(s) | s ∈ S, row(s)(ϵ) = 1} ⊆ Q is the set of final
states;

• q0 = row(ϵ) is the initial state;

• δ : Q × A → Q is the transition function given by
δ(row(s), a) = row(sa).

For this to be well-defined, we need to have ϵ ∈ S (for the initial
state) and ϵ ∈ E (for final states), and for the transition function
there are two crucial properties of the table that need to hold:
Closedness and consistency. An observation table (S,E) is closed
if for all t ∈ S·A there exists an s ∈ S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a ∈ A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple Example of Execution

Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w ∈ A⋆, |w| = n}

If the alphabet A is finite then Ln is regular for any n ∈ N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {ϵ}, and we fill the entries of the
table below by asking membership queries for ϵ, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

ϵ

ϵ 0

a 0
b 0

A1 = q0 a, b

q0 = row(ϵ) = {ϵ +→ 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S ← S ∪ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: Rows ϵ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

ϵ
ϵ 0
a 0
aa 1
b 0
ab 0
aaa 0
aab 0

ϵ a
ϵ 0 0
a 0 1
aa 1 0
b 0 0
ab 0 0
aaa 0 0
aab 0 0

A2 =

q0 q1

q2

b

a

b

aa, b

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S ← S ∪ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ϵ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.

614

L⋆ LEARNER

1 S,E ← {ϵ}
2 repeat
3 while (S,E) is not closed or not consistent
4 if (S,E) is not closed
5 find s1 ∈ S, a ∈ A such that

row(s1a) ̸= row(s), for all s ∈ S
6 S ← S ∪ {s1a}
7 if (S,E) is not consistent
8 find s1, s2 ∈ S, a ∈ A, and e ∈ E such that

row(s1) = row(s2) and L(s1ae) ̸= L(s2ae)
9 E ← E ∪ {ae}

10 Make the conjecture M(S,E)
11 if the Teacher replies no, with a counter-example t
12 S ← S ∪ prefixes(t)
13 until the Teacher replies yes to the conjecture M(S,E).
14 return M(S,E)

Figure 1. Angluin’s algorithm for deterministic finite automata [3]

structures, which allows the programmer to rely on convenient
intuitions of searching through infinite sets in finite time.

The paper is organized as follows. In Section 2, we present an
overview of our contributions (and the original algorithm) highlight-
ing the challenges we faced in the various steps. In Section 3, we
revise some basic concepts of nominal sets and automata. Section 4
contains the core technical contributions of our paper: The new
algorithm and proof of correctness. In Section 5, we describe an
algorithm to learn nominal non-deterministic automata. Section 6
contains a description of NLambda, details of the implementation,
and results of preliminary experiments. Section 7 contains a dis-
cussion of related work. We conclude the paper with a discussion
section where also future directions are presented.

2. Overview of the Approach

In this section, we give an overview of the work developed in the
paper through examples. We will start by explaining the original
algorithm for regular languages over finite alphabets, and then
explain the challenges in extending it to nominal languages.

Angluin’s algorithm L⋆ provides a procedure to learn the minimal
DFA accepting a certain (unknown) language L. The algorithm has
access to a teacher which answers two types of queries:
• membership queries, consisting of a single word w ∈ A⋆, to

which the teacher will reply whether w ∈ L or not;

• equivalence queries, consisting of a hypothesis DFA H , to
which the teacher replies yes if L(H) = L, and no otherwise,
providing a counterexample w ∈ L(H)△L (△ denotes the
symmetric difference of two languages).

The learning algorithm works by incrementally building an observa-
tion table, which at each stage contains partial information about the
language L. The algorithm is able to fill the table with membership
queries. As an example, and to set notation, consider the following
table (over A = {a, b}).

E

ϵ a aa

S
∪

S·A

⎡

⎣

ϵ 0 0 1

a 0 1 0
b 0 0 0

S,E ⊆ A⋆

row : S ∪ S·A→ 2E

row(u)(v) = 1 ⇐⇒ uv ∈ L

This table indicates that L contains at least aa and definitely
does not contain the words ϵ, a, b, ba, baa, aaa. Since row is fully

determined by the language L, we will from now on refer to an
observation table as a pair (S,E), leaving the language L implicit.

Given an observation table (S,E) one can construct a determin-
istic automaton M(S,E) = (Q, q0, δ, F) where
• Q = {row(s) | s ∈ S} is a finite set of states;

• F = {row(s) | s ∈ S, row(s)(ϵ) = 1} ⊆ Q is the set of final
states;

• q0 = row(ϵ) is the initial state;

• δ : Q × A → Q is the transition function given by
δ(row(s), a) = row(sa).

For this to be well-defined, we need to have ϵ ∈ S (for the initial
state) and ϵ ∈ E (for final states), and for the transition function
there are two crucial properties of the table that need to hold:
Closedness and consistency. An observation table (S,E) is closed
if for all t ∈ S·A there exists an s ∈ S such that row(t) = row(s).
An observation table (S,E) is consistent if, whenever s1 and s2
are elements of S such that row(s1) = row(s2), for all a ∈ A,
row(s1a) = row(s2a). Each time the algorithm constructs an
automaton, it poses an equivalence query to the teacher. It terminates
when the answer is yes, otherwise it extends the table with the
counterexample provided.

2.1 Simple Example of Execution

Angluin’s algorithm is displayed in Figure 1. Throughout this
section, we will consider the language(s)

Ln = {ww | w ∈ A⋆, |w| = n}

If the alphabet A is finite then Ln is regular for any n ∈ N, and
there is a finite DFA accepting it.

The language L1 = {aa, bb} looks trivial, but the minimal DFA
recognizing it has as many as 5 states. Angluin’s algorithm will
terminate in (at most) 5 steps. We illustrate some relevant ones.

Step 1. We start from S,E = {ϵ}, and we fill the entries of the
table below by asking membership queries for ϵ, a and b. The table
is closed and consistent, so we construct the hypothesis A1.

ϵ

ϵ 0

a 0
b 0

A1 = q0 a, b

q0 = row(ϵ) = {ϵ +→ 0}

The Teacher replies no and gives the counterexample aa, which is in
L1 but it is not accepted by A1. Therefore, line 12 of the algorithm
is triggered and we set S ← S ∪ {a, aa}.

Step 2. The table becomes the one on the left below. It is closed,
but not consistent: Rows ϵ and a are identical, but appending a leads
to different rows, as depicted. Therefore, line 9 is triggered and an
extra column a, highlighted in red, is added. The new table is closed
and consistent and a new hypothesis A2 is constructed.

ϵ
ϵ 0
a 0
aa 1
b 0
ab 0
aaa 0
aab 0

ϵ a
ϵ 0 0
a 0 1
aa 1 0
b 0 0
ab 0 0
aaa 0 0
aab 0 0

A2 =

q0 q1

q2

b

a

b

aa, b

a

a

The Teacher again replies no and gives the counterexample bb,
which should be accepted by A2 but it is not. Therefore we put
S ← S ∪ {b, bb}.

Step 3. The new table is the one on the left. It is closed, but ϵ and
b violate consistency, when b is appended. Therefore we add the
column b and we get the table on the right, which is closed and
consistent. The new hypothesis is A3.

614

row(s)(e) = 1 �� se � L

Why is this correct?

3

Closed

Consistent

Table properties

8t 2 S ·A 9s 2 S row(t) = row(s).

next state exists

next state is unique

�s1, s2 � S row(s1) = row(s2) =� �a � A row(s1a) = row(s2a)

4

Closed

Consistent

Table properties

8t 2 S ·A 9s 2 S row(t) = row(s).

next state exists

next state is unique

�s1, s2 � S row(s1) = row(s2) =� �a � A row(s1a) = row(s2a)

row(s)
a�� row(sa)

4

Closed

Consistent

Table properties

8t 2 S ·A 9s 2 S row(t) = row(s).

next state exists

next state is unique

�s1, s2 � S row(s1) = row(s2) =� �a � A row(s1a) = row(s2a)

row(s)
a�� row(sa)

4

A = {a, b}
Fixed by extending the table

Pros of L* …

Applications : Hardware verification, security/network protocols…

Generalizations : Mealy machines, I/O automata, …

simple is
beautiful POWERFUL&

6

… and shortcomings

What if program model needs to express data-flow?

L* learns control-flow

operations on data values
comparisons between data values

push(x)
pop(y)

FIFO

y = front element 7

Automata over infinite alphabets
(nominal automata)

8

L = {aa, bb, cc, dd, . . . }

A = {a, b, c, d, . . . } infinite alphabet

Automata over infinite alphabets
(nominal automata)

8

L = {aa, bb, cc, dd, . . . }

A = {a, b, c, d, . . . } infinite alphabet

Automata over infinite alphabets
(nominal automata)

infinite automaton

ϵ a
ϵ 0 0
a 0 1
aa 1 0
b 0 0
bb 1 0
ab 0 0
aaa 0 0
aab 0 0
ba 0 0
bba 0 0
bbb 0 0

ϵ a b
ϵ 0 0 0
a 0 1 0
aa 1 0 0
b 0 0 1
bb 1 0 0
ab 0 0 0
aaa 0 0 0
aab 0 0 0
ba 0 0 0
bba 0 0 0
bbb 0 0 0

A3 =

q0 q1

q2 q3

a

b

ab a

b

a, b

b

b

The Teacher replies no and provides the counterexample babb, so
S ← S ∪ {ba, bab}.

Step 4. One more step brings us to the correct hypothesis A4

(details are omitted).

A4 = q0

q1

q2

q3 q4
a a

b
b

b

a, b

a

a, b

2.2 Learning Nominal Languages

Consider now an infinite alphabet A = {a, b, c, d, . . . }. The
language L1 becomes {aa, bb, cc, dd, . . . }. Classical theory of
finite automata does not apply to this kind of languages, but one
may draw an infinite deterministic automaton that recognizes L1 in
the standard sense:

A5 =
q0

qa

qb q3 q4

...

a a

b
b

̸= a

A

̸= b

A

where
A
−→ and

̸=a
−−→ stand for the infinitely-many transitions labelled

by elements of A and A \ {a}, respectively. This automaton is
infinite, but it can be finitely presented in a variety of ways, for
example:

q0 qx q3 q4

∀x∈A
x x A

̸= x

A (1)

One can formalize the quantifier notation above (or indeed the
“dots” notation above that) in several ways. A popular solution is
to consider finite register automata [18, 25], i.e., finite automata
equipped with a finite number of registers where alphabet letters
can be stored and later compared for equality. Our language L1 is
recognized by a simple automaton with four states and one register.
The problem of learning registered automata has been successfully
attacked before [21].

In this paper, however, we will consider nominal automata [9]
instead. These automata ostensibly have infinitely many states, but
the set of states can be finitely presented in a way open to effective
manipulation. More specifically, in a nominal automaton the set of
states is subject to an action of permutations of a set A of atoms, and
it is finite up to that action. For example, the set of states of A5 is:

{q0, q3, q4} ∪ {qa | a ∈ A}

and it is equipped with a canonical action of permutations π : A→
A that maps every qa to qπa , and leaves q0, q3 and q4 fixed. Techni-
cally speaking, the set of states has four orbits (one infinite orbit and
three fixed points) of the action of the group of permutations of A.
Moreover, it is required that in a nominal automaton the transition
relation is equivariant, i.e., closed under the action of permutations.
The automaton A5 has this property: For example, it has a transi-

tion qa
a
−→ q3, and for any π : A → A there is also a transition

π(qa) = qπ(a)
π(a)
−→ q3 = π(q3).

Nominal automata with finitely many orbits of states are equi-
expressive with finite register automata [9], but they have an im-
portant theoretical advantage: They are a direct reformulation of
the classical notion of finite automaton, where one replaces finite
sets with orbit-finite sets and functions (or relations) with equivari-
ant ones. A research programme advocated in [8, 9] is to transport
various computation models, algorithms and theorems along this
correspondence. This can often be done with remarkable accuracy,
and our paper is a witness to this. Indeed, as we shall see, nominal
automata can be learned with an algorithm that is almost a verbatim
copy of the classical Angluin’s one.

Indeed, consider applying Angluin’s algorithm to our new lan-
guage L1. The key idea is to change the basic data structure: Our
observation table (S,E) will be such that S and E are equivari-
ant subsets of A⋆, i.e., they are closed under the canonical action
of atom permutations. In general, such a table has infinitely many
rows and columns, so the following aspects of the algorithm seem
problematic:

line 3: closedness and consistency tests range over infinite sets;

line 5 and 8: finding witnesses for closedness or consistency viola-
tions potentially require checking all infinitely many rows;

line 12: every counterexample t has only finitely many prefixes, so
it is not clear how one would construct an infinite set S in finite
time. However, an infinite S is necessary for the algorithm to
ever succeed, because no finite automaton recognizes L1.

At this stage, we need to observe that due to equivariance of S, E
and L1, the following crucial properties hold:

(P1) the sets S, S·A and E admit a finite representation up to
permutations;

(P2) the function row is such that row(π(s))(π(e)) = row(s)(e),
for all s ∈ S and e ∈ E, so the observation table admits a finite
symbolic representation.

Intuitively, checking closedness and consistency, and finding a wit-
ness for their violations, can be done effectively on the represen-
tations up to permutations (P1). This is sound, as row is invariant
w.r.t. permutations (P2).

We now illustrate these points through a few steps of the
algorithm for L1.

Step 1′: We start from S,E = {ϵ}. We have S·A = A, which
is infinite but admits a finite representation. In fact, for any a ∈
A, we have A = {π(a) | π is a permutation}. Then, by (P2),
row(π(a))(ϵ) = row(a)(ϵ) = 0, for all π, so the first table can be
written as:

ϵ
ϵ 0
a 0

A′
1 = q0 A

It is closed and consistent. Our hypothesis is A′
1, where

δA′
1
(row(ϵ), x) = row(x) = q0, for all x ∈ A. As in Step 1,

the Teacher replies with the counterexample aa.

Step 2′. By equivariance of L1, the counterexample tells us that all
words of length 2 with two repeated letters are accepted. Therefore

615

8

✏ a
✏ 0 0

a 0 1

aa 1 0

b 0 0

bb 1 0

ab 0 0

aaa 0 0

aab 0 0

ba 0 0

bba 0 0

bbb 0 0

✏ a b
✏ 0 0 0

a 0 1 0

aa 1 0 0

b 0 0 1

bb 1 0 0

ab 0 0 0

aaa 0 0 0

aab 0 0 0

ba 0 0 0

bba 0 0 0

bbb 0 0 0

A3 =

q0 q1

q2 q3

a

b

a

b

a

b

a/b

b

b

The Teacher replies no and provides the counterexample babb, so
S S [{ba, bab}.

Step 4. One more step brings us to the correct hypothesis A4

(details are omitted).

A4 =

q0

q1

q2

q3 q4
a

a

b

b

b

a, b

a

a, b

2.2 Learning nominal languages
Consider now an infinite alphabet A = {a, b, c, d, . . . }. The
language L1 becomes {aa, bb, cc, dd, . . . }. Classical theory of
finite automata does not apply to this kind of languages, but one
may draw an infinite deterministic automaton that recognizes L1 in
the standard sense:

A5 =

q0

qa

qb q3 q4

...

a

a

b

b

6= a

A

6= b

A

where A�! and 6=a��! stand for the infinitely-many transitions labelled
by elements of A and A \ {a}, respectively. This automaton is
infinite, but it can be finitely presented in a variety of ways, for
example:

q0 qx q3 q4

8x2A

x x A

6= x

A (1)

One can formalize the quantifier notation above (or indeed the
“dots” notation above that) in several ways. A popular solution is
to consider finite register automata [18, 25], i.e., finite automata
equipped with a finite number of registers where alphabet letters
can be stored and later compared for equality. Our language L1 is
recognized by a simple automaton with four states and one register.
The problem of learning registered automata has been successfully
attacked before [21].

In this paper, however, we will consider nominal automata [9]
instead. These automata ostensibly have infinitely many states, but
the set of states can be finitely presented in a way open to effective
manipulation. More specifically, in a nominal automaton the set of
states is subject to an action of permutations of a set A of atoms, and
it is finite up to that action. For example, the set of states of A5 is:

{q0, q3, q4} [{qa | a 2 A}

and it is equipped with a canonical action of permutations ⇡ : A!
A that maps every qa to q⇡a , and leaves q0, q3 and q4 fixed. Techni-
cally speaking, the set of states has four orbits (one infinite orbit and
three fixed points) of the action of the group of permutations of A.
Moreover, it is required that in a nominal automaton the transition
relation is equivariant, i.e., closed under the action of permutations.
The automaton A5 has this property: for example, it has a transi-
tion qa

a�! q3, and for any ⇡ : A ! A there is also a transition
⇡(qa) = q⇡(a)

⇡(a)�! q3 = ⇡(q3).
Nominal automata with finitely many orbits of states are equi-

expressive with finite register automata [9], but they have an im-
portant theoretical advantage: they are a direct reformulation of
the classical notion of finite automaton, where one replaces finite
sets with orbit-finite sets and functions (or relations) with equivari-
ant ones. A research programme advocated in [8, 9] is to transport
various computation models, algorithms and theorems along this
correspondence. This can often be done with remarkable accuracy,
and our paper is a witness to this. Indeed, as we shall see, nominal
automata can be learned with an algorithm that is almost a verbatim
copy of the classical Angluin’s one.

Indeed, consider applying Angluin’s algorithm to our new lan-
guage L1. The key idea is to change the basic data structure: our
observation table (S,E) will be such that S and E are equivari-
ant subsets of A?, i.e., they are closed under the canonical action
of atom permutations. In general, such a table has infinitely many
rows and columns, so the following aspects of the algorithm seem
problematic:
line 3: closedness and consistency tests range over infinite sets;
line 5 and 8: finding witnesses for closedness or consistency viola-

tions potentially require checking all infinitely many rows;
line 12: every counterexample t has only finitely many prefixes, so

it is not clear how one would construct an infinite set S in finite
time. However, an infinite S is necessary for the algorithm to
ever succeed, because no finite automaton recognizes L1.

At this stage, we need to observe that due to equivariance of S, E
and L1, the following crucial properties hold:
(P1) the sets S, S·A and E admit a finite representation up to

permutations;
(P2) the function row is such that row(⇡(s))(⇡(e)) = row(s)(e),

for all s 2 S and e 2 E, so the observation table admits a finite
symbolic representation.

Intuitively, checking closedness and consistency, and finding a wit-
ness for their violations, can be done effectively on the represen-
tations up to permutations (P1). This is sound, as row is invariant
w.r.t. permutations (P2).

We now illustrate these points through a few steps of the
algorithm for L1.

Step 1

0
: We start from S,E = {✏}. We have S·A = A, which

is infinite but admits a finite representation. In fact, for any a 2
A, we have A = {⇡(a) | ⇡ is a permutation}. Then, by (P2),
row(⇡(a))(✏) = row(a)(✏) = 0, for all ⇡, so the first table can be
written as:

✏
✏ 0

a 0

A0
1 =

q0
A

It is closed and consistent. Our hypothesis is A0
1, where

�A0
1
(row(✏), x) = row(x) = q0, for all x 2 A. As in Step 1,

the Teacher replies with the counterexample aa.

Step 2

0
. By equivariance of L1, the counterexample tells us that all

words of length 2 with two repeated letters are accepted. Therefore

3 2016/8/31

but with a finite representation

L = {aa, bb, cc, dd, . . . }

A = {a, b, c, d, . . . } infinite alphabet

Automata over infinite alphabets
(nominal automata)

infinite automaton

ϵ a
ϵ 0 0
a 0 1
aa 1 0
b 0 0
bb 1 0
ab 0 0
aaa 0 0
aab 0 0
ba 0 0
bba 0 0
bbb 0 0

ϵ a b
ϵ 0 0 0
a 0 1 0
aa 1 0 0
b 0 0 1
bb 1 0 0
ab 0 0 0
aaa 0 0 0
aab 0 0 0
ba 0 0 0
bba 0 0 0
bbb 0 0 0

A3 =

q0 q1

q2 q3

a

b

ab a

b

a, b

b

b

The Teacher replies no and provides the counterexample babb, so
S ← S ∪ {ba, bab}.

Step 4. One more step brings us to the correct hypothesis A4

(details are omitted).

A4 = q0

q1

q2

q3 q4
a a

b
b

b

a, b

a

a, b

2.2 Learning Nominal Languages

Consider now an infinite alphabet A = {a, b, c, d, . . . }. The
language L1 becomes {aa, bb, cc, dd, . . . }. Classical theory of
finite automata does not apply to this kind of languages, but one
may draw an infinite deterministic automaton that recognizes L1 in
the standard sense:

A5 =
q0

qa

qb q3 q4

...

a a

b
b

̸= a

A

̸= b

A

where
A
−→ and

̸=a
−−→ stand for the infinitely-many transitions labelled

by elements of A and A \ {a}, respectively. This automaton is
infinite, but it can be finitely presented in a variety of ways, for
example:

q0 qx q3 q4

∀x∈A
x x A

̸= x

A (1)

One can formalize the quantifier notation above (or indeed the
“dots” notation above that) in several ways. A popular solution is
to consider finite register automata [18, 25], i.e., finite automata
equipped with a finite number of registers where alphabet letters
can be stored and later compared for equality. Our language L1 is
recognized by a simple automaton with four states and one register.
The problem of learning registered automata has been successfully
attacked before [21].

In this paper, however, we will consider nominal automata [9]
instead. These automata ostensibly have infinitely many states, but
the set of states can be finitely presented in a way open to effective
manipulation. More specifically, in a nominal automaton the set of
states is subject to an action of permutations of a set A of atoms, and
it is finite up to that action. For example, the set of states of A5 is:

{q0, q3, q4} ∪ {qa | a ∈ A}

and it is equipped with a canonical action of permutations π : A→
A that maps every qa to qπa , and leaves q0, q3 and q4 fixed. Techni-
cally speaking, the set of states has four orbits (one infinite orbit and
three fixed points) of the action of the group of permutations of A.
Moreover, it is required that in a nominal automaton the transition
relation is equivariant, i.e., closed under the action of permutations.
The automaton A5 has this property: For example, it has a transi-

tion qa
a
−→ q3, and for any π : A → A there is also a transition

π(qa) = qπ(a)
π(a)
−→ q3 = π(q3).

Nominal automata with finitely many orbits of states are equi-
expressive with finite register automata [9], but they have an im-
portant theoretical advantage: They are a direct reformulation of
the classical notion of finite automaton, where one replaces finite
sets with orbit-finite sets and functions (or relations) with equivari-
ant ones. A research programme advocated in [8, 9] is to transport
various computation models, algorithms and theorems along this
correspondence. This can often be done with remarkable accuracy,
and our paper is a witness to this. Indeed, as we shall see, nominal
automata can be learned with an algorithm that is almost a verbatim
copy of the classical Angluin’s one.

Indeed, consider applying Angluin’s algorithm to our new lan-
guage L1. The key idea is to change the basic data structure: Our
observation table (S,E) will be such that S and E are equivari-
ant subsets of A⋆, i.e., they are closed under the canonical action
of atom permutations. In general, such a table has infinitely many
rows and columns, so the following aspects of the algorithm seem
problematic:

line 3: closedness and consistency tests range over infinite sets;

line 5 and 8: finding witnesses for closedness or consistency viola-
tions potentially require checking all infinitely many rows;

line 12: every counterexample t has only finitely many prefixes, so
it is not clear how one would construct an infinite set S in finite
time. However, an infinite S is necessary for the algorithm to
ever succeed, because no finite automaton recognizes L1.

At this stage, we need to observe that due to equivariance of S, E
and L1, the following crucial properties hold:

(P1) the sets S, S·A and E admit a finite representation up to
permutations;

(P2) the function row is such that row(π(s))(π(e)) = row(s)(e),
for all s ∈ S and e ∈ E, so the observation table admits a finite
symbolic representation.

Intuitively, checking closedness and consistency, and finding a wit-
ness for their violations, can be done effectively on the represen-
tations up to permutations (P1). This is sound, as row is invariant
w.r.t. permutations (P2).

We now illustrate these points through a few steps of the
algorithm for L1.

Step 1′: We start from S,E = {ϵ}. We have S·A = A, which
is infinite but admits a finite representation. In fact, for any a ∈
A, we have A = {π(a) | π is a permutation}. Then, by (P2),
row(π(a))(ϵ) = row(a)(ϵ) = 0, for all π, so the first table can be
written as:

ϵ
ϵ 0
a 0

A′
1 = q0 A

It is closed and consistent. Our hypothesis is A′
1, where

δA′
1
(row(ϵ), x) = row(x) = q0, for all x ∈ A. As in Step 1,

the Teacher replies with the counterexample aa.

Step 2′. By equivariance of L1, the counterexample tells us that all
words of length 2 with two repeated letters are accepted. Therefore

615

8

How to learn them?

9

How to learn them?

Ad-hoc algorithm? NO!

9

How to learn them?

Ad-hoc algorithm? NO!

�s1, s2 � S row(s1) = row(s2) =� �a � A row(s1a) = row(s2a)

8t 2 S ·A 9s 2 S row(t) = row(s).

Challenges: • table needs to be infinite
• code operates on infinite sets

9

How to learn them?

Ad-hoc algorithm? NO!

�s1, s2 � S row(s1) = row(s2) =� �a � A row(s1a) = row(s2a)

8t 2 S ·A 9s 2 S row(t) = row(s).

Challenges: • table needs to be infinite
• code operates on infinite sets

Everything is “finitely representable”

9

Nominal automata theory

(change category from Set to Nom)

(finite) sets (orbit-finite) nominal sets
functions equivariant functions

Mikolaj Bojanczyk, Bartek Klin, Slawomir Lasota:
Automata with Group Actions. LICS 2011

Nominal Programming languages

Bartek Klin, Michal Szynwelski:
SMT Solving for Functional Programming over Infinite
Structures. MSFP 2016

A paradigm shift

10

Nominal automata theory

(change category from Set to Nom)

(finite) sets (orbit-finite) nominal sets
functions equivariant functions

Mikolaj Bojanczyk, Bartek Klin, Slawomir Lasota:
Automata with Group Actions. LICS 2011

Nominal Programming languages

Bartek Klin, Michal Szynwelski:
SMT Solving for Functional Programming over Infinite
Structures. MSFP 2016

Nominal L*

A paradigm shift

10

Nominal automata theory

(change category from Set to Nom)

(finite) sets (orbit-finite) nominal sets
functions equivariant functions

Mikolaj Bojanczyk, Bartek Klin, Slawomir Lasota:
Automata with Group Actions. LICS 2011

Nominal Programming languages

Bartek Klin, Michal Szynwelski:
SMT Solving for Functional Programming over Infinite
Structures. MSFP 2016

Nominal L*

First non-trivial application of a new
programming paradigm (NLambda)

A paradigm shift

10

Nominal automata theory

(change category from Set to Nom)

(finite) sets (orbit-finite) nominal sets
functions equivariant functions

Mikolaj Bojanczyk, Bartek Klin, Slawomir Lasota:
Automata with Group Actions. LICS 2011

Nominal Programming languages

Bartek Klin, Michal Szynwelski:
SMT Solving for Functional Programming over Infinite
Structures. MSFP 2016

Nominal L*
Works with any
(suitable) data domain

First non-trivial application of a new
programming paradigm (NLambda)

A paradigm shift

10

Nominal automata theory

(change category from Set to Nom)

(finite) sets (orbit-finite) nominal sets
functions equivariant functions

Mikolaj Bojanczyk, Bartek Klin, Slawomir Lasota:
Automata with Group Actions. LICS 2011

Nominal Programming languages

Bartek Klin, Michal Szynwelski:
SMT Solving for Functional Programming over Infinite
Structures. MSFP 2016
Eryk Kopczynski, Szymon Torunczyk:
LOIS: syntax and semantics. POPL 2017

Nominal L*
Works with any
(suitable) data domain

First non-trivial application of a new
programming paradigm (NLambda)

A paradigm shift

10

Correctness and termination

11

Correctness and termination

NLambda guarantees that each line of code terminates

11

Correctness and termination

Algorithm correctness and termination from scratch?

NLambda guarantees that each line of code terminates

11

Correctness and termination

Algorithm correctness and termination from scratch?
Not really

Set-based proofs as guidelines

L* enjoys a nice category-theoretic generalization
Bart Jacobs, Alexandra Silva
Automata Learning: A Categorical Perspective, Horizons of the Minds 2014

NLambda guarantees that each line of code terminates

11

What we’ve done

• Nominal L*

• More in the paper: variations, Nominal NL*

• NLambda (Haskell) Implementation

• Experimental results

12

What’s next…
• Improve NLambda

• Other active learning algorithms

• Other optimizations

• Applications: large-scale software, crypto
protocols…

13

Try it yourself
https://www.mimuw.edu.pl/~szynwelski/nlambda/

https://github.com/Jaxan/nominal-lstar C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Learning Nominal Automata ∗

Joshua Moerman

Radboud University, The Netherlands

joshua.moerman@cs.ru.nl

Matteo Sammartino
Alexandra Silva

University College London, UK

{m.sammartino,alexandra.silva}@ucl.ac.uk

Bartek Klin
Michał Szynwelski

University of Warsaw, Poland

{klin,szynwelski}@mimuw.edu.pl

Abstract

We present an Angluin-style algorithm to learn nominal automata,
which are acceptors of languages over infinite (structured) alphabets.
The abstract approach we take allows us to seamlessly extend
known variations of the algorithm to this new setting. In particular
we can learn a subclass of nominal non-deterministic automata.
An implementation using a recently developed Haskell library for
nominal computation is provided for preliminary experiments.

Categories and Subject Descriptors D.1.1 [Software]: Program-
ming Techniques; F.4.3 [Mathematical Logic and Formal Lan-
guages]: Formal Languages; I.3.2 [Artificial Intelligence]: Learn-
ing

Keywords Active Learning, (Non)Deterministic Finite Automata,
Nominal Automata, Functional Programming

1. Introduction

Automata are a well established computational abstraction with a
wide range of applications, including modelling and verification of
(security) protocols, hardware, and software systems. In an ideal
world, a model would be available before a system or protocol
is deployed in order to provide ample opportunity for checking
important properties that must hold and only then the actual system
would be synthesized from the verified model. Unfortunately, this
is not at all the reality: Systems and protocols are developed and
coded in short spans of time and if mistakes occur they are most
likely found after deployment. In this context, it has become popular
to infer or learn a model from a given system just by observing its
behaviour or response to certain queries. The learned model can
then be used to ensure the system is complying to desired properties
or to detect bugs and design possible fixes.

Automata learning, or regular inference [3], is a widely used
technique for creating an automaton model from observations. The
original algorithm [3], by Dana Angluin, works for deterministic
finite automata, but since then has been extended to other types of
automata [1, 4, 35], including Mealy machines and I/O automata,
and even a special class of context-free grammars. Angluin’s algo-
rithm is sometimes referred to as active learning, because it is based

∗ Work partially supported by the Polish National Science Centre (NCN)
grant 2012/07/E/ST6/03026.

on direct interaction of the learner with an oracle (“the Teacher”)
that can answer different types of queries. This is in contrast with
passive learning, where a fixed set of positive and negative examples
is given and no interaction with the system is possible.

In this paper, staying in the realm of active learning, we will
extend Angluin’s algorithm to a richer class of automata. We are
motivated by situations in which a program model, besides control
flow, needs to represent basic data flow, where data items are
compared for equality (or for other theories such as total ordering).
In these situations, values for individual symbols are typically drawn
from an infinite domain and automata over infinite alphabets become
natural models, as witnessed by a recent trend [2, 9, 12, 15, 17].

One of the foundational approaches to formal language theory
for infinite alphabets uses the notion of nominal sets [9]. The theory
of nominal sets originates from the work of Fraenkel in 1922, and
they were originally used to prove the independence of the axiom of
choice and other axioms. They have been rediscovered in Computer
Science by Gabbay and Pitts [36], as an elegant formalism for
modeling name binding, and since then they form the basis of many
research projects in the semantics and concurrency community. In
a nutshell, nominal sets are infinite sets equipped with symmetries
which make them finitely representable and tractable for algorithms.
We make crucial use of this feature in the development of a learning
algorithm.

Our main contributions are the following.
• A generalization of Angluin’s original algorithm to nominal

automata. The generalization follows a generic pattern for
transporting computation models from finite sets to nominal
sets, which leads to simple correctness proofs and opens the
door to further generalizations. The use of nominal sets with
different symmetries also creates potential for generalization,
e.g. to languages with time features [7] or data dependencies
represented as graphs [33].

• An extension of the algorithm to nominal non-deterministic
automata (nominal NFAs). To the best of our knowledge, this is
the first learning algorithm for non-deterministic automata over
infinite alphabets. It is important to note that, in the nominal
setting, NFAs are strictly more expressive than DFAs. We
learn a subclass of the languages accepted by nominal NFAs,
which includes all the languages accepted by nominal DFAs.
The main advantage of learning NFAs directly is that they
can provide exponentially smaller automata when compared
to their deterministic counterpart. This can be seen both as a
generalization and as an optimization of the algorithm.

• An implementation using our recently developed Haskell li-
brary tailored to nominal computation – NLambda [26]. Our
implementation is the first non-trivial application of a novel pro-
gramming paradigm of functional programming over infinite

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

POPL’17, January 15–21, 2017, Paris, France

c� 2017 ACM. 978-1-4503-4660-3/17/01...$15.00

http://dx.doi.org/10.1145/3009837.3009879

613

