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SIGLOG Executive Committee
Prakash Panangaden: Chair
Luke Ong: Vice-chair

Natarajan Shankar: Treasurer
Alexandra Silva: Secretary
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A tribute to Prakash Panangaden

Thanks for the friendship and inspiration!




Automata learning: encounters

» 2011 : Frits Vaandrager.

Printed Angluin’s paper Learning Regular Sets from Queries and
Counterexamples.
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Automata learning: encounters
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Automata learning: encounters

» 2013: Prakash’s volume

Printed Angluin’s paper Learning Regular Sets from Queries and
Counterexamples. . .

» ...and read it with categorical glasses. Joint work with
Bart Jacobs.

2/18



The L* algorithm: ingredients

» Master language £: A* — 2 (regular language).

4/18



The L* algorithm: ingredients

» Master language £: A* — 2 (regular language).

» The teacher, omniscient, answers 2 types of queries
» weLl?
» Guess correct? If no, counter-example.

4/18



The L* algorithm: ingredients

» Master language £: A* — 2 (regular language).
» The teacher, omniscient, answers 2 types of queries
» weLl?
» Guess correct? If no, counter-example.
» L[*-algorithm (Angluin 87)
» Incrementally builds an observation table.
» Table closed & consistent = finite automaton accepting £

4/18



The L* algorithm: ingredients

» Master language £: A* — 2 (regular language).

» The teacher, omniscient, answers 2 types of queries
» weLl?
» Guess correct? If no, counter-example.
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Note: well-definedness of automaton uses closed & consistent.
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The L* algorithm: from table to automaton
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Another butterfly!
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9/18



Another butterfly!

init final 2
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Theorem
The automaton associated with a closed and consistent
observation table is minimal.
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Proof of minimality: the usual butterfly!

)\l init final Tev
* Ax
A - -~ T3QTT -~ -2
cl lé la
(A*)A* o $QA7 _ $(2A*)A
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The L* algorithm: learning the table

1: function LEARNER

2 S« {A\}; E«+ {\}

3 repeat

4 while (S, E) is not closed or not consistent do
5 if (S, E) is not consistent then

6 find sy, € S, a€ A, and e € E such that
7 row(sy) = row(s,) and L(s1ae) # L(spae)
8 E + EuU{ae}.

9 end if

10 if (S, E) is not closed then

11: find sy € S, a € Asuch that

12: row(sia) # row(s),foralls € S
13: S+ SU({sia}.

14 end if

15 end while

16 Make the conjecture M(S, E).

17 if the Teacher replies no to the conjecture, with a counter-example t then
18 S+ Su [t.

19: end if

20: until the Teacher replies yes to the conjecture M(S, E).

21: return M(S, E).

22: end function
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The L* algorithm: example

L ={u € {a,b}* | the number of a’s in u is divisible by 3}.
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The L* algorithm: example
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(S, E) consistent? v/

(S, E) closed? v/
Second guess:

The teacher replies yes.
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The generalizations

» Table, automaton, proof of minimality: independent of
output set.

LA —2 L: A" —= B

» Change in functor: Moore and Mealy machines.
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The generalizations

v

Table, automaton, proof of minimality: independent of
output set.

LA —2 L: A" —= B

v

Change in functor: Moore and Mealy machines.
Category with factorization structure.
Change in category: linear weighted automata.

v

v

Examples in the paper.
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Conclusions

» Trivial but yet insightful (at least for Bart and me ;-))
categorical understanding of Angluin’s algorithm.

» Mealy example: several papers justifying it.

» Applications of learning are vast, rich playground and
source of examples.

» Future work: learning from incomplete information,
heuristics, ...
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Happy birthday!
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