Automata learning: a categorical perspective
A tribute to Prakash Panangaden

Alexandra Silva

Radboud University Nijmegen
and
Centrum Wiskunde & Informatica

Prakash fest, 24 May 2014

1/18

A tribute to Prakash Panangaden

terrified student

2/18

A tribute to Prakash Panangaden

not so terrified student

2/18

A tribute to Prakash Panangaden

2/18

A tribute to Prakash Panangaden

A tribute to Prakash Panangaden

co-explorer (of port winel!)

2/18

A tribute to Prakash Panangaden

co-organizer

2/18

A tribute to Prakash Panangaden

SIGLOG

2/18

A tribute to Prakash Panangaden

SIGLOG Executive Committee
Prakash Panangaden: Chair
Luke Ong: Vice-chair

Natarajan Shankar: Treasurer
Alexandra Silva: Secretary

SIGLOG

2/18

A tribute to Prakash Panangaden

Thanks for the friendship and inspiration!

Automata learning: encounters

» 2011 : Frits Vaandrager.

Printed Angluin’s paper Learning Regular Sets from Queries and
Counterexamples.

2/18

Automata learning: encounters

» 2011 : Frits Vaandrager.

Printed Angluin’s paper Learning Regular Sets from Queries and
Counterexamples.

» 2012: One night in Dagstuhl

I have this feeling that category theory has something to
say about automata learning. (Prakash)

2/18

Automata learning: encounters

» 2011 : Frits Vaandrager.

Printed Angluin’s paper Learning Regular Sets from Queries and
Counterexamples.

» 2012: One night in Dagstuhl

I have this feeling that category theory has something to
say about automata learning. (Prakash)

Printed Angluin’s paper Learning Regular Sets from Queries and
Counterexamples.

2/18

Automata learning: encounters

» 2013: Prakash’s volume

2/18

Automata learning: encounters

» 2013: Prakash’s volume

Printed Angluin’s paper Learning Regular Sets from Queries and
Counterexamples. . .

» ...and read it with categorical glasses. Joint work with
Bart Jacobs.

2/18

The L* algorithm: ingredients

» Master language £: A* — 2 (regular language).

4/18

The L* algorithm: ingredients

» Master language £: A* — 2 (regular language).

» The teacher, omniscient, answers 2 types of queries
» weLl?
» Guess correct? If no, counter-example.

4/18

The L* algorithm: ingredients

» Master language £: A* — 2 (regular language).
» The teacher, omniscient, answers 2 types of queries
» weLl?
» Guess correct? If no, counter-example.
» L[*-algorithm (Angluin 87)
» Incrementally builds an observation table.
» Table closed & consistent = finite automaton accepting £

4/18

The L* algorithm: ingredients

» Master language £: A* — 2 (regular language).

» The teacher, omniscient, answers 2 types of queries
» weLl?
» Guess correct? If no, counter-example.

» L[*-algorithm (Angluin 87)
» Incrementally builds an observation table.

» Table closed & consistent = finite automaton accepting £
and minimal!

4/18

The L* algorithm: the observation table
An observation table is a triple (S, E, row), where

row: (SUS-A) — 2F

with S, E C 24,

5/18

The L* algorithm: the observation table

An observation table is a triple (S, E, row), where
row: (SUS-A) — 2F

with S, E C 24,

Closed and Consistent Table

(S, E,row) is closedif forall t € S- Athere existsan s € S
such that row(t) = row(s).

5/18

The L* algorithm: the observation table

An observation table is a triple (S, E, row), where
row: (SUS-A) — 2F

with S, E C 24,

Closed and Consistent Table

(S, E,row) is closedif forall t € S- Athere existsan s € S
such that row(t) = row(s).

(S, E, row) is consistent if whenever sq, s, € S are such that
row(sy) = row(sy), for all a € A, row(sia) = row(s,a).

5/18

The L* algorithm: the observation table

(S,E,row) is closedifforallt € S- Athere existsan s € S
such that row(t) = row(s).

A/18

The L* algorithm: the observation table

closed

(S,E,row) is closedifforallt € S- Athere existsan s € S
such that row(t) = row(s).

A/18

The L* algorithm: the observation table

closed

(S, E, row) is consistent if whenever sy, s, € S are such that
row(sy) = row(sp), for all a € A, row(sya) = row(s,a).

A/18

The L* algorithm: the observation table

row 2E
m
S {?
en '%(ZE)A

A
N(row)

closed consistent

(S, E, row) is consistent if whenever sy, s, € S are such that
row(sy) = row(sp), for all a € A, row(sya) = row(s,a).

A/18

The L* algorithm: the observation table

closed consistent

A/18

The L* algorithm: from table to automaton

Closed and consistent table (S, E) to DFA (Q, o, 9, F):

» Qis afinite set of states: Q = {row(s) | s € S}.

7/18

The L* algorithm: from table to automaton

Closed and consistent table (S, E) to DFA (Q, o, 9, F):

» Qis afinite set of states: Q = {row(s) | s € S}.

» F C Qis a set of final states:
F ={row(s)|se S, row(s)(\) =1}.

7/18

The L* algorithm: from table to automaton

Closed and consistent table (S, E) to DFA (Q, o, 9, F):

» Qis afinite set of states: Q = {row(s) | s € S}.

» F C Qis a set of final states:
F ={row(s)|se S, row(s)(\) =1}.
» qo € Qs the initial state: qy = row(\).

7/18

The L* algorithm: from table to automaton

Closed and consistent table (S, E) to DFA (Q, o, 9, F):

v

Q is afinite set of states: Q = {row(s) | s € S}.
F C Qs a set of final states:

F ={row(s) | s e S,row(s)(\) =1}.

Qo € Qs the initial state: qy = row(\).

0: Q x A— Qis the transition function:
d(row(s), a) = row(sa).

v

v

v

7/18

The L* algorithm: from table to automaton

Closed and consistent table (S, E) to DFA (Q, o, 9, F):

v

Q is afinite set of states: Q = {row(s) | s € S}.
F C Qs a set of final states:

F ={row(s) | s e S,row(s)(\) =1}.

Qo € Qs the initial state: qy = row(\).

0: Q x A— Qis the transition function:
d(row(s), a) = row(sa).

v

v

v

Note: well-definedness of automaton uses closed & consistent.

7/18

The L* algorithm: from table to automaton

S—e»Q

gpl f//lw where { ;Z

K aA
QA m (2E)A

A(i o ea)
ma Oj.

8/18

Another butterfly!

\ l init f/nal T evy

9/18

Another butterfly!

init final 2
)\l ini ina TeVA
2E
%
)
QA

Theorem
The automaton associated with a closed and consistent
observation table is minimal.

9/18

Proof of minimality: the usual butterfly!

)\l init final Tev
* Ax
A - -~ T3QTT -~ -2
cl lé la
(A*)A* o $QA7 _ $(2A*)A

10/18

The L* algorithm: learning the table

1: function LEARNER

2 S« {A\}; E«+ {\}

3 repeat

4 while (S, E) is not closed or not consistent do
5 if (S, E) is not consistent then

6 find sy, € S, a€ A, and e € E such that
7 row(sy) = row(s,) and L(s1ae) # L(spae)
8 E + EuU{ae}.

9 end if

10 if (S, E) is not closed then

11: find sy € S, a € Asuch that

12: row(sia) # row(s),foralls € S
13: S+ SU({sia}.

14 end if

15 end while

16 Make the conjecture M(S, E).

17 if the Teacher replies no to the conjecture, with a counter-example t then
18 S+ Su [t.

19: end if

20: until the Teacher replies yes to the conjecture M(S, E).

21: return M(S, E).

22: end function

11/18

The L* algorithm: example

L ={u € {a,b}* | the number of a’s in u is divisible by 3}.

12/18

The L* algorithm: example

L ={u € {a,b}* | the number of a’s in u is divisible by 3}.

(S, E) consistent? v/

> O

—~—
U!l)y‘

~ of [~

12/18

The L* algorithm: example

L ={u € {a,b}* | the number of a’s in u is divisible by 3}.

> O

—~—
U!l)y‘

~ of [~

(S, E) consistent? v/
(S, E) closed? No.

12/18

The L* algorithm: example

L ={u € {a,b}* | the number of a’s in u is divisible by 3}.

S {)\? (S, E) consistent? v/
20 (S, E) closed? No.
S-A
b1
1: if (S, E) is not closed then
2 find sy € S, a € A such that
3: row(sia) # row(s), foralls € S
4: S+ SuU{sia}.
5: end if

12/18

The L* algorithm: example

L ={u € {a,b}* | the number of a’s in u is divisible by 3}.

S {)\? (S, E) consistent? v/
20 (S, E) closed? No.
S-A{b 1 Then, S + SuU{a}.
1: if (S, E) is not closed then
2 find sy € S, a € A such that
3: row(sia) # row(s), foralls € S
4: S+ SuU{sia}.
5: end if

12/18

The L* algorithm: example

A
IDVER
alo
b1
0
0

aa
ab

13/18

The L* algorithm: example

(S, E) consistent? v/
(S, E) closed? v
A
YRR
alo
b1
0
0

aa
ab

13/18

The L* algorithm: example

(S, E) consistent? v/
(S, E) closed? v

A
_a|

b
b —
S DI

aa
ab

13/18

The L* algorithm: example

(S, E) consistent? v/
(S, E) closed? v

A
TT Guess
al0 b ab
b1 a @ qozrow()\)
aa|0 g1 = row(a)
ab|0

Teacher replies with counter-example aaa.

13/18

The L* algorithm: example

—_

(S, E) consistent? v/
(S, E) closed? v

A
TT Guess
alo b a,b
b1 a @ qozrow()\)
aa|0 g1 = row(a)
ab|0

Teacher replies with counter-example aaa.

: Make the conjecture M(S, E).

if the Teacher replies no to the conjecture, with a counter-example t
then

S+ Su |t.
end if

13/18

The L* algorithm: example

—_

(S, E) consistent? v/
(S, E) closed? v

A
TT Guess
al0 b ab
b1 a @ qozrow()\)
aa|0 g1 = row(a)
ab|0

Teacher replies with counter-example aaa.

S+ Su{a, aa, aaa}.

: Make the conjecture M(S, E).

if the Teacher replies no to the conjecture, with a counter-example t
then

S+ Su |t.
end if

13/18

The L* algorithm: example

aa
_aaa | (S, E) consistent?
ab
aab
aaaa
aaab

14/18

The L* algorithm: example

aa

_aaa | (S, E) consistent?

b No, row(a) = row(aa) but row(aa) # row(aaa).

aab
aaaa
aaab

(ep

14/18

The L* algorithm: example

S
A 1
a |0
aa |0
Lza% (S, E) consistent?
ab |0 No, row(a) = row(aa) but row(aa) # row(aaa).
aab | 0
aaaa |0
aaab | 1
1: if (S, E) is not consistent then
2 find sy, € S, ac€ A, and e € E such that
3: row(sy) = row(sz) and L(st1ae) # L(s:ae)
4 E «+ EU{ae}.
5: end if

14/18

The L* algorithm: example

A
A1
a |0
aa |0
Lza% (S, E) consistent?
No, row(a) = row(aa) but row(aa) # row(aaa).
ab 0 E+ Eu{a}
aab | 0 '
aaaa | 0
aaab | 1
1: if (S, E) is not consistent then
2 find sy, € S, ac€ A, and e € E such that
3: row(sy) = row(sz) and L(st1ae) # L(s:ae)
4 E «— EU{ae}.
5: end if

14/18

The L* algorithm: example

>
QD

(S, E) consistent? v/
(S, E) closed? v/

aa
aaa

ab
aab
aaaa
aaab

oy
- OO0 O =200 =
OO 000 —~0O0

15/18

The L* algorithm: example

aa
aaa

ab
aab
aaaa
aaab

>

- OO0 O =200 =

QD

OO0 200 O0C—+0O0

(S, E) consistent? v/

(S, E) closed? v/
Second guess:

The teacher replies yes.

15/18

The generalizations

» Table, automaton, proof of minimality: independent of
output set.

LA —2 L: A" —= B

» Change in functor: Moore and Mealy machines.

16/18

The generalizations

v

Table, automaton, proof of minimality: independent of
output set.

LA —2 L: A" —= B

v

Change in functor: Moore and Mealy machines.
Category with factorization structure.
Change in category: linear weighted automata.

v

v

Examples in the paper.

16/18

Conclusions

» Trivial but yet insightful (at least for Bart and me ;-))
categorical understanding of Angluin’s algorithm.

» Mealy example: several papers justifying it.

» Applications of learning are vast, rich playground and
source of examples.

» Future work: learning from incomplete information,
heuristics, ...

17/18

Conclusions

» Trivial but yet insightful (at least for Bart and me ;-))
categorical understanding of Angluin’s algorithm.

» Mealy example: several papers justifying it.

» Applications of learning are vast, rich playground and
source of examples.

» Future work: learning from incomplete information,
heuristics, ...

» Category Theory does have something to say about
learning!

17/18

Conclusions

» Trivial but yet insightful (at least for Bart and me ;-))
categorical understanding of Angluin’s algorithm.

» Mealy example: several papers justifying it.

» Applications of learning are vast, rich playground and
source of examples.

» Future work: learning from incomplete information,
heuristics, ...

» Category Theory does have something to say about
learning!

17/18

Happy birthday!

18/18

	Automata learning

